Структурные особенности. Антигенная структура

Первые данные о вирусе гриппа получены при выделении вируса от больного в 1933 г. (Smith W. et al., 1933). Выделенный изолят вируса и подобные ему (со сходными свойствами) были названы вирусом гриппа типа А. Впоследствии этот тип вируса постоянно выявляли в период сезонных эпидемий гриппа, которые он вызывал. В 1940 г. был идентифицирован вирус гриппа типа В, который признан вторым по важности вирусом, выделяемым во время эпидемий (Francis T., 1940; Frank A.L. et al., 1983). Вирус, выделенный от больного гриппом в 1949 г., не относился ни к типу А, ни к типу В, и был обозначен как вирус гриппа типа С (Francis T. et al., 1950). Течение заболевания, вызванного вирусом гриппа типа С, не было тяжелым, а его активность не подчинялась законам сезонных эпидемий (Shaw M.W. et al., 1992).

Вирусы гриппа типов А и В представляют род Orthomyxovirus в составе семейства Orthomyxoviridae. Геном вируса гриппа представлен односетевой сегментированной РНК, каждый сегмент имеет самостоятельную транскрипцию (табл. 1).

Как показано на рис. 1, на поверхности сферических или филаментных вирионов гриппа имеются «шипы», которые представляют собой поверхностные гликопротеины: гемагглютинин (H) и нейраминидазу (N). Вирусы гриппа типа А описаны по номенклатуре, включающей биологического хозяина, географическое происхождение, номер штамма и год его выделения. Антигенная классификация H и N дана в скобках, например, А/Гонконг/1/68(H 3 N 2). Всего насчитывается 14 антигенных подтипов гемагглютинина (H 1 — H 1 4) и 9 подтипов нейраминидазы (N 1 — N9).

Таблица 1
Реализация генетической информации вируса гриппа

Сегмент РНК Продукты генов Функции
1 Полимераза (PB2) Полимеразный комплекс, участвую-щий в транскрипции и репликации РНК
2 Полимераза (PB1)
3 Полимераза (PA)
4 Гемагглютинин (H) Прикрепление к специфическим рецепторам на поверхности клетки
5 Нуклеопротеин (NP) Основной компонент рибонуклео-протеинового (РНП) комплекса в вирионе и инфицированной клетке
6 Нейраминидаза (N) Фермент, уничтожающий рецепторы
7 Матрикс (M1) Матрикс (M2) Матричный белок мембраны Трансмембранный белок (только в типе А)
8 Неструктурный (NS1) Неструктурный (NS2) Неструктурный белок Неструктурный белок

Все подтипы обнаруживают у водоплавающих птиц, и только некоторые из них — у человека (H 1 N 1 , H 2 N 2 , H 3 N 2), свиней и лошадей (Hinshaw V.S., Webster R.G., 1992). Подобные подтипы отсутствуют у вируса гриппа типа В.

1.1. Поверхностные белки

1.1.1. Гемагглютинин

Гликопротеин (Н), содержание которого составляет до 25% всего вирусного белка, выполняет по крайней мере три функции: а) прикрепление вируса к специфическим рецепторам на клеточной мембране; б) слияние вириона и клетки при вхождении в последнюю вируса; в) обеспечение «площадки», к которой преимущественно прикрепляются антитела, нетрализующие инфекционность вируса гриппа (Ada G.L., Jones P.D., 1986). Молекула Н присутствует в вирионе в виде тримера. Каждый мономер представлен двумя полипептидами, НА1 и НА2, соединенных одной дисульфидной связью. Дистальный отрезок полипептида НА1 содержит активные центры для связывания с рецепторами и антителами. Вариации в активных центрах, предназначенных для связывания с антителами, являются в основном причиной частых вспышек гриппа и неудач в постоянном контроле над вирусом методом активной иммунизации (Webster R.G. et al., 1982). В отличие от вариабельности НА1, полипептид НА2 является достаточно неизменчивым (Krystal M., 1982).

1.1.2. Нейраминидаза

Шипы N вириона представляют собой тетрамеры, закрепленные в липидном бислое вируса. Нейраминидаза обладает активностью, направленной на уничтожение рецепторов, и предотвращает агрегацию незрелых вирионов, что в значительной степени снижает их инфекционность (Palese P., 1974).

Антинейраминидазные антитела угнетают высвобождение незрелых вирусных частиц из инфицированной клетки путем образования перекрестных связей между почкующимися вирионами. Присутствие антинейраминидазных антител обратно пропорционально коррелирует с заболеваемостью и тяжестью клинических проявлений инфекции (Schulman I.L., 1975; Ada G.L., Jones P.D., 1986). На основании этих данных появилась концепция «нейраминидазоспецифической вакцины» (Couch R.B. et al., 1974).

1.2. Внутренние белки

Нуклеопротеин (NP) — один из типоспецифичных антигенов, по которому отличаются вирусы типов А, В и С. Принадлежит к основным антигенам, на которые направлена активность цитотоксических Т-лимфоцитов — ЦТЛ (Tite I.P. et al., 1988). Мембрана матричного белка М1 также является типоспецифичным антигеном вириона. Ее роль в индукции иммунитета не выяснена (Webster R.G. et al., 1982). Второй полипептид — М2, кодируемый геномом 7, определенным образом связан c резистентностью к противовирусному препарату амантадину (Hay A.I. et al., 1985). Полимеразные белки (РА, РВ1 и РВ2) транскрибируют вирусную РНК и, вероятно, не имеют существенного значения в выработке иммунитета.

Неструктурные белки (NS1, NS2) кодируются самым маленьким сегментом РНК и, вероятно, не участвуют в формировании иммунного ответа.

2. Молекулярная генетика вируса гриппа

2.1. Антигенный шифт

Сегментированная природа генома вируса гриппа ответственна за значительные вариации, которые возможны как в генотипе, так и в фенотипе (табл. 2, 3) (Palese P., Kingsbury D.W., 1983). При инфицировании клетки более чем одним штаммом в ней может образоваться потомство вирусов с новыми сочетаниями генов. Этот процесс, который может происходить как в природных условиях, так и в лаборатории, называется рекомбинацией, или пересортировкой (reassortment) (Webster R.G. et al., 1971). При таком антигенном шифте (дословно с англ. «сдвиг») происходит обмен участками генома, кодирующими H и N.

Таблица 2
Изменчивость вируса гриппа

Пандемические штаммы вируса гриппа А возникают при пересортировке генов человеческих и животных штаммов при одновременном инфицировании промежуточного хозяина, возможно, свиньи, которая служит как бы «смешивающим сосудом» (Hinshaw V.S. et al., 1978; Scholtissek C. et al., 1985).

2.2. Антигенный дрейф

Менее радикальные изменения — антигенный дрейф компонентов H и N возникают при точечных мутациях в генах, вследствие которых накапливаются изменения в последовательностях аминокислот, что в свою очередь приводит к изменению активных центров антигена, при которых они перестают распознаваться иммунной системой хозяина.

Повторное возникновение подтипа гриппа А (H 1 N 1) в 1977 г. стало иллюстрацией феномена рециркуляции, потому что штаммы, выделенные в Северном Китае, имели выраженное сходство со штаммами, циркулировавшими в 1950 г. (Scholtissek C. et al., 1978).

Вариабельность Н может также проявляться в период адаптации вируса гриппа к куриному эмбриону (Schild G.C. et al., 1983; Robertson J.S. et al., 1987). Поскольку вирус гриппа, используемый в качестве вакцины, культивируется в куриных эмбрионах, возник вопрос, не будут ли изменения антигенности достаточными для того, чтобы снизить защитные свойства вакцины по отношению циркулирующих человеческих штаммов. Однако экспериментальные данные свидетельствовали, что штаммы вируса А (H 3 N 2), выращенные как в куриных эмбрионах, так и в клетках млекопитающих, у человека индуцируют одинаковые защитные свойства при его контакте с вирусом (Katz J.C. et al., 1987).

Природа иммунного ответа на вакцинацию

Гуморальный (антительный) ответ

Существуют доказательства того, что антитела в сыворотке крови, определяемые методами торможения гемагглютинации, нейтрализации инфекционности и угнетения N, являются хорошими прогностическими факторами резистентности конкретного индивидуума к инфекции. Сывороточные антитела, иммуноглобулины класса G (IgG) к Н играют основную роль в защите от гриппа (Potter C.W., Oxford J.S., 1979; Ada G.L., Jones P.D., 1986). В высоких концентрациях обеспечивают полную защиту. В более низких концентрациях предотвращают развитие или ослабляют проявления заболевания после заражения у значительного количества больных. Антигемагглютининовый титр (1:40) или (1:32) многие авторы (Hobson D. et al., 1972; Longini I.M. et al., 1988; Davis J.R., Grillis E.A., 1989) определяют как защитный порог. Результаты полевых исследований свидетельствуют, что предсуществующие контакту с вирусом титры, превышающие это значение, обеспечивают по крайней мере частичную защиту.

Таким образом, определение уровней сывороточных антигемагглютининов может рассматриваться в качестве индикатора уровня иммунитета против гриппа.

Достоверную выработку антител иногда регистрировали уже через 4 дня после вакцинации взрослых, контактировавших ранее с вирусом (Zuckerman M.A. et al., 1991). Несмотря на данные о чрезвычайно быстром ответе и высоких уровнях защиты, высокий защитный уровень антител возникает в течение 14 дней после вакцинации (Pyhala R. et al., 1993). Время действия защитных уровней иммунитета после вакцинации инактивированной вакциной редко превышает 1 год, что важно в практическом отношении (Clark A. et al., 1983).

Состав выработанных в ответ на вакцинацию антител зависит главным образом от предыдущих контактов пациента с антигеном. Пациенты, примированные одними подтипами вируса в детстве, по-разному реагируют на гомологичную или гетерологичную инфекцию или вакцинацию впоследствии, по сравнению с теми, у кого был контакт с другими подтипами вируса (Davenport F.M. et al., 1953; Francis T. et al., 1953; Webster R.G., 1966). Этот феномен может повлиять на часть вакцинированных, но ни в коем случае не может быть причиной отказа от ежегодной вакцинации, поскольку новые антитела обеспечивают защиту от эпидемического демические штаммы вируса гриппа А возникают при пересортировке генов человеческих и животных штаммов при одновременном инфицировании промежуточного хозяина, возможно, свиньи, которая служит как бы «смешивающим сосудом» (Hinshaw V.S. et al., 1978; Scholtissek C. et al., 1985).

Со времени выделения первого вируса гриппа произошло два крупных антигенных шифта у вируса гриппа А человека, не учитывая повторное возникновение штаммов этого вируса А (H 1 N 1) в 1977 г. В ретроспективных сероэпидемиологических исследованиях выявлены подтипы эпидемических штаммов, которые циркулировали до 1933 г. (Masurel N. et al., 1973). Установлено также, что вирусы гриппа типов B и C не подвергаются антигенным шифтам, возможно, потому, что они не имеют животного резервуара, в отличие от типа вируса гриппа А. Антигенные шифты возникают через нерегулярные промежутки времени — 10-40 лет.

Местный антительный ответ

Применение инактивированных вакцин обычно не приводит к выработке IgA в верхних дыхательных путях, но ведет к образованию IgG антител в верхних и нижних дыхательных путях (Clements M.L., Murphy B.R., 1986). Местный иммунный ответ, заключающийся в выработке IgG, отмечен у 94% примированных пациентов после введения инактивированной вакцины, антител класса IgA — только у 38% (Zahradnik J.M. et al., 1983; Clements M.L. et al., 1986).

Влияние возраста на иммунный ответ

По результатам многочисленных наблюдений предполагают, что иммунный ответ после вакцинации от гриппа может снижаться с возрастом. Считают, что иммунодефицит, связанный со старением, зависит от постепенной инволюции вилочковой железы, что приводит к недостаточной выработке Т-клеток, в то время как В-клетки остаются интактными (Thomas M.L., Weigle W.O., 1989). Полагают также, что функция Т-клеток снижается у лиц пожилого возраста, поэтому как количество, так и качество Тх с возрастом может изменяться. Так, выявлено снижение выработки интерлейкина-2 (IL-2) с возрастом в ответ на введение вакцины против гриппа (Huang J.P. et al., 1992).

Опубликованы данные о снижении эффективности вакцины против гепатита В в пожилом возрасте, что также подтверждает предположение о возрастном снижении иммунного ответа (Denis F. et al., 1984). Однако у большинства привитых больных гепатитом В, проживающих в Северном полушарии, не было недавних контактов с этим вирусом, а у лиц пожилого возраста отмечен один контакт или более с одним или несколькими типами или подтипами вируса гриппа, циркулирующими в течение их жизни. Таким образом, вакцинация действует как бустер и активирует клоны предсуществующих В-клеток памяти.

С возрастом происходят и изменения в подклассах вырабатываемых антител. Ухудшение с возрастом выработки антител класса IgG1 может быть причиной более низкой эффективности вакцины, отмеченной по крайней мере в нескольких исследованиях у пациентов пожилого возраста по сравнению с таковой у молодых (Hocart M.J. et al., 1990; Remarque E.J. et al., 1993; Powers D.C., 1994). Антитела IgG1 — наиболее эффективный подкласс, способствующий активации комплемента и нейтрализации вируса. Гемагглютинин-ингибирующая активность коррелирует больше с титрами IgG1, чем с любым другим изотипом IgG (Burton D. et al., 1986). Активированные лимфоциты, полученные от лиц пожилого возраста, секретируют меньше IL-2, чем IL-4, IL-6 и гамма-интерферона по сравнению с клетками, полученными у лиц молодого возраста (контроль) (Daynes R.A. et al., 1993). Изменения в профиле цитокинов могут быть ответственны за возрастные изменения в относительных количествах специфических антител подклассов IgG. В нескольких работах исследовали ответ ЦТЛ на введение вакцины для профилактики гриппа в пожилом возрасте (Gorse G.J., Belshe R.B., 1990; Powers D.C., Belshe R.B., 1993).

При сравнительном исследовании клеточного иммунного ответа у лиц пожилого возраста отмечали достоверно более низкие исходные и пиковые поствакцинальные уровни специфического лизиса аутологичных клеток-мишеней, инфицированных вирусом гриппа типа А, однако ЦТЛ-опосредованный ответ был сравним с таковым у взрослых молодого возраста. Гриппо-специфическая ЦТЛ-активность снижалась у пожилых лиц через 3 мес после вакцинации (Powers D.C., Belshe R.B., 1993). Наблюдаемая ограниченная персистенция ЦТЛ-памяти у привитых лиц пожилого возраста может иметь некоторое значение вследствие наличия интервала между введением вакцины поздней осенью и сезоном эпидемии гриппа в зимний период.

Эпидемиология гриппа

Гриппозная инфекция у человека определяется сложными взаимодействиями нескольких факторов, включая вирулентность и генетическую специфичность вируса, иммунитет хозяина и, возможно, как генетические факторы, так и факторы внешней среды, которые влияют на передачу вируса в человеческой популяции (Hemmes J.H. et al., 1960). Для гриппа характерна определенная сезонность с наивысшей активностью зимой и ранней весной. Факторы окружающей среды в этот период могут иметь значение для передачи вируса гриппа (Ghendon Y., 1991). В тропиках эпидемии гриппа происходят в сезон дождей. Основная активность эпидемического процесса наблюдается во время случайных пиков, спорадическая активность — на протяжении всего года; эндемическая персистенция между эпидемиями является хорошо задокументированным фактом (Ghendon Y., 1991).

Повышенная заболеваемость гриппом в закрытых коллективах (дома престарелых) обусловлена скученностью. Вирус гриппа передается воздушно-капельным путем (при кашле или чиханьи), поэтому частые контакты лиц в закрытых коллективах, совместное питание и проживание способствуют перекрестной инфекции (Longini I.M. et al., 1982).

В большинстве исследований установлено, что уровень заболеваемости детей дошкольного и школьного возраста гораздо выше, чем взрослых (Monto A.S., Kiomehr F., 1975). Следовательно, семьи, в которых есть дети, страдают от гриппа значительно больше. Поэтому вакцинация детей, проживающих в непосредственном контакте с лицами из групп высокого риска, такими, как пожилые, рекомендуется для снижения вероятности передачи вируса этим лицам (Immunization Practices Advisory Committee (ACIP), 1992).

По данным исследований эпидемических процессов, частота возникновения гриппа составляет от 10 до 20% всех респираторных заболеваний в эпидемический год. Заболеваемость гриппом типа А при этом несколько выше, чем гриппом типа В (Ghendon Y., 1991). Однако заболеваемость гриппом типа А в закрытых коллективах может достигать 60% (Glezen W.P., 1982).

Катастрофическая пандемия 1918-1920 гг. («испанка»), во время которой во всем мире погибло более 20 миллионов заболевших, пандемии 1957 г. («Азиатский грипп») и 1968 г. («Гонконгский грипп») свидетельствуют об опасности внезапно возникающих штаммов вируса гриппа, против которых у населения отсутствует иммунитет (Collins S.D. et al., 1930). Ежегодные зимние эпидемии, вызываемые дрейфующими вариантами гриппа типа А и В, менее драматичны и поэтому их опасность часто недооценивают. Тем не менее они ответственны за повышение заболеваемости и смертности в группах риска (Barker W.H., Mullooly J.P., 1980; Choi K., Thacker S.B., 1981; Blackwelder W.C. et al., 1982; Cameron A.S. et al., 1985; Lui K., Kendal A.P., 1987; Baron R.C. et al., 1988; Glathe H., Rasch G., 1992; McBean A.M. et al., 1993; Sprenger M.C. et al., 1993).

Такие часто возникающие клинические осложнения, как пневмония, вторичные бактериальные инфекции или обострения имеющейся патологии, опасны для лиц пожилого возраста и пациентов с хроническими заболеваниями. В США ежегодные эпидемии являются причиной смерти 20 000-40 000 больных и госпитализаций 150 000 — 200 000, в основном лиц пожилого возраста с хроническими заболеваниями (Choi K., Thacker S.B., 1981; Blackwelder W.C. et al., 1982; Lui K., Kendal A.P., 1987; Baron R.C. et al., 1988). В период эпидемии 1989- 1990 гг. 26 000 человек умерли от осложнений гриппа в Великобритании, 55 000 — в США и 4100 — в Нидерландах (Curwen M. et al., 1990; Sprenger M.I.W. et al., 1990). Частота госпитализации взрослых с сопутствующими заболеваниями высокого риска возрастает во время крупных эпидемий в 2-5 раз, достигая максимальной частоты надфоновых госпитализаций 800 на 100 000 субъектов из групп высокого риска, что обусловит 1600 «дополнительных» госпитализаций на 1 миллион жителей, если взять за точку отсчета, что 20% всего населения входят в группу высокого риска (Barker W.H., Mullooly J.P., 1980; Sprenger M.C. et al., 1993).

Грипп как медицинская проблема

Среди медицинской общественности сегодня уже существует общее понимание проблемы гриппа и его серьезных последствий для здоровья. Болезнь ассоциируется с большой частотой серьезных осложнений и абсолютные показатели смертности порой достигают миллионов, хотя смертность, напрямую связанная с гриппом, порой может быть занижена или не выявлена.

Смертность вследствие гриппа или его осложнений особенно высока у лиц, находящихся в учреждениях закрытого типа, у пациентов с хроническими заболеваниями, туберкулезом и бронхиальной астмой, артериосклерозом, артериальной гипертензией, ревматическими поражениями сердца, цереброваскулярными заболеваниями, генерализированным артериосклерозом, сахарным диабетом, болезнью Паркинсона и множественным рассеянным склерозом. Например, во время эпидемии Азиатского гриппа 1957 года в Нидерландах смертность среди пациентов с эндокринными заболеваниями (в основном с сахарным диабетом) возросла на 25% (Polak M.F., 1959; Ashley J. et al., 1991; Foster D.A. et al., демические штаммы вируса гриппа А возникают при пересортировке генов человеческих и животных штаммов при одновременном инфицировании промежуточного хозяина, возможно, свиньи, которая служит как бы «смешивающим сосудом» (Hinshaw V.S. et al., 1978; Scholtissek C. et al., 1985).

Со времени выделения первого вируса гриппа произошло два крупных антигенных шифта у вируса гриппа А человека, не учитывая повторное возникновение штаммов этого вируса А (H 1 N 1) в 1977 г. В ретроспективных сероэпидемиологических исследованиях выявлены подтипы эпидемических штаммов, которые циркулировали до 1933 г. (Masurel N. et al., 1973). Установлено также, что вирусы гриппа типов B и C не подвергаются антигенным шифтам, возможно, потому, что они не имеют животного резервуара, в отличие от типа вируса гриппа А. Антигенные шифты возникают через нерегулярные промежутки времени — 10-40 лет.

Грипп как социально-экономическая проблема

Социально-экономические последствия гриппа еще труднее оценить, а данные, которыми мы располагаем, чаще всего опубликованы в США и странах Западной Европы. Так, во Франции во время эпидемии гриппа 1989-1990 гг. общее количество дней нетрудоспособности составило 17 млн (Sprenger M.J.W. et al., 1992). В 31% случаев причиной отсутствия с сентября по март сотрудников на рабочих местах было заболевание гриппом (Nicol K.L. et al., 1994) (табл. 4). По опубликованным данным величины охвата групп риска в Европе колеблются от 30 до 78%. В США определена первостепенная задача службы охраны здоровья на 2000 год — достижение 60% охвата пациентов из групп риска. Невысокие показатели охвата объясняются скорее всего такими факторами, как национальная политика в области здравоохранения.

В большинстве стран мира бюджетные средства преимущественно направляются на решение проблем заболеваний сердечно-сосудистой системы, рака, СПИД/ВИЧ и сексуального здоровья, медицины катастроф. В прессе и научной литературе широко освещаются проблемы контролируемых рандомизированных и неконтролируемых исследований, посвященных в основном вопросам клинической эффективности применения вакцин. К сожалению, эти работы не могут быть использованы в качестве доказательства эффективности непосредственно профилактической медицины и тем более для укрепления позиций профилактики в умах чиновников и управленцев всех уровней. Даже специалисты порой не могут доказать эффективность профилактической работы с конкретными вакцинами, прогнозировать оборачиваемость вложений. Вместе с тем, подсчитано, что польза вакцинации и, в частности, у детей, больше, чем все другие медицинские мероприятия, включая использование антибиотиков. В то же время показательным является то, что менее 10% мирового бюджета расходуется на проведение вакцинопрофилактики. Экономическая эффективность предотвращения гриппа является одной из самых выгодных для бюджета стратегий в области превентивной медицины, уступая лишь профилактике гепатита В. Рынок же всех противоинфекционных вакцин примерно равен рынку одного только препарата для лечения язвы желудка. Почему же такая экономически выгодная для национальной службы здравоохранения стратегия не используется? Почему до сих пор при наличии современных высокоэффективных вакцин не удается полностью искоренить определенные инфекционные заболевания? Существует много причин, но основными, по-видимому, следует считать следующие:

  • Охват при вакцинации должен быть адекватным, что необходимо для создания коллективного иммунитета. Например, предполагалось полностью ликвидировать корь к 1991 г. Теперь очевидно, что для достижения этой цели необходима вакцинация 99% населения.
  • Недостоверная или невыверенная информация о побочных эффектах, которой уделяется чересчур много внимания. Чтобы избежать этого требуется образование и обучение как медицинских работников, так и населения.

Дополнительная литература

Оглавление темы "ОРВИ. Парамиксовирусы. Эпидемический паротит.":










Типовые антигены вирусов гриппа типа А - гемагглютинин и нейрамшшдаза; на сочетании этих белков основана классификация вирусов гриппа.

В частности, у вируса гриппа А выделяют 13 антигенов различных типов гемагглютинина и 10 типов нейраминидаз. Антигенные различия среди вирусов гриппа типов А, В и С определяют различия в структурах NP- и М-белков.

Все штаммы вирусов типа А имеют групповой (S-) антиген , выявляемый в РТГА. Типоспецифические антигены вирусов гриппа - гемагглютинин и нейраминидаза; варьирование их структуры приводит к появлению новых серологических вариантов, часто в динамике одной эпидемической вспышки.

Изменения антигенной структуры вируса гриппа могут происходить двумя путями:

Антигенный дрейф вируса гриппа.

Вызывает незначительные изменения структуры антигенов , обусловленные точечными мутациями. В большей степени происходит изменение структуры гемагглютинина. Дрейф развивается в динамике эпидемического процесса и снижает специфичность иммунных реакций, развившихся в популяции в результате предшествующей циркуляции возбудителя.

Антигенный шифт вируса гриппа.

Вызывает появление нового антигенного варианта вируса , не связанного либо отдалённо антигенно-родственного ранее циркулирующим вариантам. Предположительно антигенный шифт происходит в результате генетической рекомбинации между штаммами вируса человека и животных либо латентной циркуляции в популяции вируса, исчерпавшего свои эпидемические возможности. Каждые 10-20 лет происходит обновление популяции людей, но иммунная «прослойка» исчезает, что приводит к формированию пандемий.



Грипп A/H1N1 как типичная эмерджентная инфекция: Общая характеристика вирусов гриппа, изменчивость, появление новых пандемических штаммов

Вирусы гриппа - РНК-содержащие вирусы - относятся к сем. Orthomyxoviridae и разделяются на вирусы А, В и С (табл. 1).

Таблица 1.

Сравнительная характеристика вирусов гриппа

Критерии Тип А Тип В Тип С
Тяжесть заболевания ++++ ++ +
Природный резервуар Есть Нет Нет
Пандемии человека Вызывает Не вызывает Не вызывает
Эпидемии человека Вызывает Вызывает Не вызывает (лишь спорадические заболевания)
Антигенные изменения Шифт, дрейф Дрейф Дрейф
Сегментированный геном Да Да Да
Чувствительность к ремантадину Чувствительны Не чувствительны Не чувствительны
Чувствительность к занамивиру Чувствительны Чувствительны -
Поверхностные гликопротеины 2 (HA, NA) 2 (HA, NA) 1(HA)

Вирус гриппа имеет сферическую форму и размер 80-120 нм. Сердцевина представлена одноцепочечной отрицательной цепью РНК, состоящей из 8 фрагментов, которые кодируют 11 вирусных белков.

Вирусы гриппа А широко распространены в природе и поражают как людей, так и целый ряд млекопитающих и птиц. Вирусы гриппа типов В и С выделены только от человека.

Эпидемически значимыми являются 2 подтипа вируса гриппа А - H3N2 и H1N1 и вирус гриппа типа В (А.А. Соминова с соавт, 1997; О.М. Литвинова с соавт., 2001). Итогом такой ко-циркуляции явилось развитие в один и тот же эпидсезон в различных странах эпидемий гриппа различной этиологии. Гетерогенность популяции эпидемических вирусов возрастает также за счет дивергентного характера изменчивости вирусов гриппа, что приводит к одновременной циркуляции вирусов, относящихся к различным эволюционным ветвям (О.М. Литвинова с соавт., 2001). В этих условиях создаются предпосылки для одновременного инфицирования человека различными возбудителями, что приводит к формированию смешанных популяций и реассортации как между вирусами ко-циркулирующих подтипов, так и среди штаммов в пределах одного подтипа (О.И. Киселев с соавт., 2000).

Классификация типов вирусов гриппа основана на антигенных различиях двух поверхностных гликопротеинов - гемагглютинина (НА) и нейраминидазы (NА). Согласно этой классификации вирусы гриппа и подразделяют на 3 типа - вирусы гриппа типа А, типа В и типа С. Различаются 16 подтипов НА и 9 подтипов NА.

Рис. 1. Классификация вирусов гриппа А и виды животных и птиц - промежуточные и конечные хозяева в цепи передачи инфекции к человеку.
Недавно открыт 16 подтип (Н16) гемагглютинина
Примечание: ∗ НА 7 и NА 7-NА8 выявили и у лошадей

На рис. 1 представлены подтипы вирусов гриппа типа А и их промежуточные хозяева и природные резервуары (перелетные птицы). К основным хозяевам вирусов гриппа А относятся те виды, которым свойственна заболеваемость гриппом.

В популяции человека до настоящего времени выявлены вирусы гриппа А только трех подтипов с НА1, НА2 и НА3. При этом вирусы содержат только два типа нейраминидазы - NА1 и NА2 (рис.1). Доказана их стабильная циркуляция в течении прошлого столетия, начиная с пандемии 1918 г (R.G. Webster et al., 1978; K.G. Nicholson et al., 2003).

Вирусы гриппа А (в меньшей степени В) обладает способностью к изменению структуры НА и NА. Для вируса гриппа А характерны два типа изменчивости:

  • точечные мутации в вирусном геноме с соответствующим изменением в НА и NА (антигенный дрейф);
  • полная замена одного или обоих поверхностных гликопротеинов (НА и NА) вируса путем реассортации/рекомбинации (антигенный шифт), в результате которого появляется принципиально новый вариант вируса, способный вызвать гриппозные пандемии.

Для вируса гриппа В антигенная изменчивость ограничивается только дрейфом, т.к. он, по-видимому, не имеет природного резервуара среди птиц и животных. Для вируса гриппа С характерна большая стабильность антигенной структуры и с ним связаны лишь локальные вспышки и спорадические случаи заболевания.

Представляет определенный интерес появление новых штаммов вируса гриппа в человеческой популяции и связанные с ними пандемии (рис. 2). На рис. 2 представлены основные антигенные шифты, ассоциированные с панедмиями ХХ века, вызванные вирусами гриппа А:

  • в 1918 г пандемия была вызвана вирусом типа H1N1;
  • в 1957 г - H2N2 штаммом А/Singapore/1/57;
  • в 1968 г - H3N2 штаммом A/Hong Kong/1/68;
  • в 1977 г - H1N1 штаммом A/USSR/1/77 (многие ученые не рассматривали это как пандемию, но с появлением этого штамма сложилась ситуация с одновременной ко-циркуляцией 2 штаммов вируса гриппа А - H3N2 и H1N1).

В 1986 г в Китае вирус А/Тайвань/1/86 вызвал обширную эпидемия гриппа А/H1N1, продолжавшуюся до 1989г. Дрейф варианты этого вируса просуществовали до 1995 г, вызывая локальные вспышки и спорадические случаи заболевания. По результатам молекулярно-биологических исследований в геноме вируса А/H1N1 в эти годы возникли множественные мутации. В 1996 г появились два антигенных варианта вируса гриппа А/H1N1: А/Берн и А/Пекин, их особенностью являлась не только антигенная, но и географическая разобщенность. Так, в России вирус гриппа А/Берн принял активное участие в эпидемии гриппа 1997-98 гг. В этот же сезон на востоке страны была зарегистрирована циркуляция штаммов вируса А/Пекин. В дальнейшем в 2000-2001 гг. вирус гриппа А/H1N1 стал возбудителем эпидемии гриппа в России. Современные вирусы гриппа А/H1N1 обладают низкой иммуногенной активностью, свежие выделенные изоляты вируса взаимодействуют только в эритроцитами млекопитающих (человека 0 группы и морских свинок).

Рис. 2. Возникновение новых штаммов вируса гриппа в человеческой популяции и связанные с ними пандемии

В прошлом столетии вирусы гриппа типа А претерпели значительные генетические изменения, результатом чего явились глобальные пандемии с высокой летальностью среди людей. Самая большая пандемия гриппа (H1N1) была в 1918-1919 гг. («испанка»). Вирус, появившийся в 1918 г проделал выраженный дрейф, исходные (Hsw1N1) и конечные (H1N1) его варианты считаются шифтовыми. Вирус вызвал опустошительную эпидемия, унесшую 20 млн жизней (половина погибших - молодые люди в возрасте от 20 до 50 лет (M.T. Osterholm, 2005).

Исследования J.K. Tanbenberger et al., (2005) показали, что вирус, вызвавший пандемию 1918 г., не являлся реассортантом между птичьим вирусом гриппа и вирусом гриппа человека - все 8 генов вируса H1N1 имели больше сходство с вариантами «птичьего» вируса, нежели человеческого (рис. 3). Поэтому, по мнению R.B. Belshe (2005) вирус гриппа птиц, должен инфицировать (минуя промежуточного хозяина) человека, передаваясь от человека к человеку.

Рис. 3. Механизмы происхождения пандемических вирусов гриппа
  • «Азиатский» грипп (1957-1958 гг.), вызванный вирусом А/H2N2, который впервые зарегистрирован в Центральном Китае, не отличался столь драматичностью для человечества, но общая летальность в мире составила 1 -2 млн чел. Причем самая высокая смертность наблюдалась среди больных старше 65 лет. Пандемии 1957 и 1968 гг. были вызваны новыми вирусами, появившимися в результате реассортации. В 1957 г двойное инфицирование, вероятно, человека или свиньи птичьим вирусом H2N2 и человеческим вирусом H1N1 дало начало новому вирусу, содержащему гены НА, NА и ген, кодирующий один из белков полимеразы (РВ1) - от «птичьего» вируса и 5 генетических сегментов вируса гриппа H1N1 человека 1918 г. Этот вирус циркулировал в популяции человека до 1968 г, когда его вытеснил новый реассортантный вирус H3N2 (Гонконг).
  • «Гонконгский» грипп , вызванный вирусом А/H3N2 (1968-1969 гг.) впервые был выделен в Гонконге. Он появился в результате замены Н2 и полимеразного гена (РВ1) вируса H2N2 на 2 новых гена вируса гриппа птиц Н3 и РВ1. Остальные 6 генов этого вируса были человеческими (т.е. от предыдущего вируса 1957 г) и сегодня потомок этого вируса, согласно рис. 3, продолжает циркулировать среди людей. Гены вируса А /H3N2, происходят от вируса, вызвавшего пандемию в 1918 г (R.B. Belshe, 2005) (рис.3). Гонконгский грипп не отличался столь высокой смертностью, как в предыдущие пандемии, так как антигенные изменения произошли только в НА (антигенный шифт), а NА вируса осталась неизмененной. Наличие антител к NА, не предотвращает развития заболевания, однако может ослабить тяжесть течения инфекции (W.P. Glesen, 1996). Вполне вероятно, что низкая смертность, среди пожилых людей, связана с штаммом вируса гриппа с Н3, который циркулировал в мире в этом столетии и поэтому люди старше 60 лет имели протективные антитела к этому вирусу (L. Simonsen et al., 2004).
  • После 20-летнего перерыва стал снова циркулировать новый вариант вируса гриппа А/H1N1 , который в 1977-1978 гг. вызвал эпидемию, достаточно умеренную, после которой в мире одновременно начали циркулировать 3 варианта возбудителя: вирусы гриппа А подтипов H1N1 и H3N2 и типа В.
  • Важно отметить, что вирусы гриппа птиц «участвуют» в появлении новых «человеческих» вирусов гриппа, которые характеризуются высокой патогенностью и способностью вызывать пандемии (Э.Г. Деева, 2008). Эти вирусы (H1N1, H2N2 и H3N2) имели различный набор внутренних генов, происхождение которых указывает на их филогенетическую связь с вирусами птиц и свиней.

    Каковы же механизмы происхождения пандемических штаммов и какие биологические характеристики необходимы для появления высокопатогенного вируса с пандемическим потенциалом?

    Для вирусов гриппа А характерна высокая частота возникновения реассортантов в результате смешанного заражения, что обусловлено сегментированностью вирусного генома. Преобладание реассортанта определенного генного состава считается результатом селекции, при которой из обширного набора разных реассортантов отбирается именно такой, который наиболее приспособлен к репродукции в данных условиях (Н.Л. Варич с соавт., 2009). Штаммоспецифические свойства геномных сегментов могут оказать сильное влияние на генный состав реассортантов в неселективных условиях. Другими словами, отличительной особенностью вирусов гриппа является то, что в восьми из генных сегментов, особенно в гене НА, происходят частые и непредсказуемые мутации. Реассортация играет важную роль в появлении новых вариантов вирусов, в частности в происхождении пандемических штаммов. И иногда нельзя исключить возможность появления на протяжении пандемии вируса с более высокой вирулентностью.

    Современные исследования показали, что генная структура нового вируса А/H1N1 является сложной и в его состав, как мы уже отмечали во введении, входят гены свиного гриппа, поражающего свиней Северной Америки; гены свиного гриппа, поражающего свиней Европы и Азии; гены птичьего гриппа; гены человеческого гриппа. По сути, гены нового вируса получены из четырех различных источников. Микрофотография вируса гриппа А/H1N1 представлена на рис. 4.

    Рис. 4. Микрофотография вируса гриппа А/H1N1

    ВОЗ опубликовала «Руководство для лабораторий гриппа» и представила новые данные по последовательности вирусных генов и их длины реассортантного нового вируса гриппа А/H1N1 (изолят - А/California/04/2009): НА, NА, М, РВ1, РВ2, РА, NР, NS. Эти данные свидетельствуют о формировании нового пандемического варианта вируса, создавая всеобщую уязвимость перед инфекцией в виду отсутствия к иммунитета. Становится понятным, что пандемические варианты вируса гриппа возникают посредством как минимум двух механизмов:

    • реассортации между вирусами гриппа животных/птиц и человека;
    • непосредственной адаптации вируса животных/птиц к человеку.

    Для понимания происхождения пандемических вирусов гриппа важное значение имеет изучение свойств природного резервуара инфекции и путях эволюции этого семейства вирусов при смене хозяина. Уже хорошо известно и это можно утверждать, что водоплавающие птицы являются природным резервуаром вирусов гриппа А (адаптированные к этим промежуточным хозяевам в течение многих столетий), о чем свидетельствует носительство всех 16 подтипов НА этого вируса. Через фекалии птиц, которые в воде могут сохраняться более 400 дней (Грипп птиц…, 2005), вирусы могут передаваться другим видам животных при употреблении воды из водоема. (K.G. Nicholson et al., 2003). Это подтверждается филогенетическим анализом последовательностей нуклеиновых кислот разных подтипов вирусов гриппа А от различных хозяев и из различных географических регионов.

    Анализ последовательностей гена нуклеопротеина показал, что вирусы гриппа птиц эволюционировали с появлением 5 специфических хозяйских линий: вирусы диких и домашних лошадей, чаек, свиней и человека. Причем (!) вирусы гриппа человека и свиней составляют так называемую сестринскую группу, что свидетельствует об их близком родстве и, естественно, общем происхождении. Предшественник вирусов гриппа человека и классический свиной вирус, по-видимому, имели полностью «птичье» происхождение. В странах Средней Азии, по известным причинам, свинина не популярна, и эти животные практически отсутствуют в животноводстве. Это приводит к тому, что (в отличие от Китая, например), данный регион не имеет в популяции домашних животных основного промежуточного хозяина - свиней, поэтому вероятность «зарождения» пандемических вирусов в Среднеазиатском регионе ниже, чем в Китае, что практически и следует из данных по анализу их происхождения (Грипп птиц, 2005). Постоянный источник генов пандемических вирусов гриппа, существует (в фенотипически неизменнном состоянии), в природном резервуаре вирусов водоплавающих и перелетных птиц (R.G. Welster, 1998). Следует иметь в виду, что предшественники вирусов, вызвавших пандемию «испанки» (1918 г), как и вирусы, явившиеся источником генома пандемических штаммов Азия/57 и Гонконг/68, до сих пор циркулируют среди популяции диких птиц с незначительными мутационными изменениями (Грипп птиц…, 2005).

    Комментарии

    (видны только специалистам, верифицированным редакцией МЕДИ РУ)

    Первый штамм вируса гриппа, выделенный от человека, имел антигенную формулу Н0N1 (1933 год), а уже в 1947 г. был выделен серовар Н1N1; за последние 30 лет выделены серовары Н2N2, Н3N2.

    Теории происхождения пандемических штаммов вируса гриппа. Всепандемии гриппа были вызваны вирусами гриппа А, претерпевшими шифт.Пандемия гриппа 1918 г. была вызвана вирусом с фенотипом Н1N1 (погибло около 20 миллионов человек); пандемия 1957 г. – вирусом Н2N2 (переболело более половины населения мира); 1968 г. – вирусом Н3N2. Для объяснения причин такой резкой смены типов вирусов гриппа А были предложены 2 гипотезы.

    Согласно зооантропонозной гипотезе (авторы Вебстер и Тембол), вирус, вызвавший пандемию, после возникновения к нему иммунитета переходит на популяции млекопитающих или птиц. Затем в результате генетических рекомбинаций (чему способствует фрагментированный геном) между вирусами гриппа А человека и животных возникает рекомбинантный штамм с новым типом гемагглютинина, к которому у людей еще нет иммунитета, и он вызывает новую пандемию гриппа.

    Согласно антропонозной гипотезе, выдвинутой Френсисом (США) и А.А. Смородинцевым (СССР), вирус, исчерпавший свои эпидемические возможности, не исчезает, а продолжает циркулировать в коллективе людей без заметных вспышек или длительно персистировать в организме человека. Через 10-20 лет, когда появится новое поколение людей, не имеющих к нему иммунитета, этот вирус возвращается и становится причиной новой пандемии. Данная гипотеза подтверждается тем, что вирус гриппа А с фенотипом Н1N1, исчезнувший в 1957 г., когда его вытеснил вирус Н2N2, вновь появился, после двадцатилетнего отсутствия, в 1977 г. Кроме того, по данным серологической археологии, пандемия 1889 г. была, очевидно, вызвана вирусом с фенотипом Н2N2, так как в 1957 г. антитела к нему были обнаружены только у людей старше 70 лет, не болевших во время пандемии 1957 г. Наконец, установлено, что грипп у людей вызывали и вызывают вирусы типа А только 3 или 4 фенотипов (Н1N1 (H0N1), H2N2, H3N2). Вместе с тем, выявилась новая эпидемиологическая особенность гриппа: если раньше каждый новый пандемический вариант полностью вытеснял своего предшественника, то с 1977 года вирусы с фенотипами Н1N1 и H3N2 как бы сосуществуют в коллективе, обладая, вероятно, до определенного времени равными эпидемическими возможностями. Антигенные дрейфы и шифты вирусов гриппа А являются главным препятствием при создании эффективных вакцин.

    Культивирование вирусов гриппа А. Вирусы гриппа А культивируются в куриных эмбрионах и культурах клеток. В куриных эмбрионах вирусы гриппа А репродуцируются в течение 36-48 ч в амниотической и аллантоисной полостях при температуре 37˚С. Наиболее чувствительными к вирусу гриппа А являются первичные культуры клеток почек эмбриона человека и некоторых животных. Репродукция вируса в этих культурах сопровождается слабо выраженным цитопатическим действием, напоминающим спонтанную дегенерацию клеток.

    Вирусы гриппа А можно культивировать в организме мышей, обезьян и приматов. Мыши в естественных условиях не инфицируются вирусами гриппа, но вирусы гриппа А могут быть адаптированы к мышам. Вирус размножается в верхних и нижних отделах респираторного тракта и после адаптации может вызвать у мышей пневмонию и смерть. Вид мышей А2G не чувствителен к гриппу и несет доминантную аллель (ген Мх), которая кодирует белок, индуцируемый интерфероном и ингибирует вирус гриппа.

    Эпидемиология. Круг хозяев и распространение вируса. Вирусы гриппа А обычно вызывают заболевание у людей, свиней, лошадей и редко у птиц. С 1933 г. 3 серотипа гемагглютинина были идентифицированы у людей, 2 – у свиней и 2 – у лошадей. Все 16 серотипов были обнаружены у водоплавающих птиц, в основном у диких уток; они обычно не вызывают заболевание у этих хозяев, но служат резервуарами генетической информации гриппа А. Вирусы гриппа (птичьего происхождения) были случайно выделены от норок и китов.

    Эволюция. Результаты анализа последовательностей каждого из генов вирусов гриппа А подтвердили предположение, что существует 5 специфических линий происхождения от хозяев, и что происхождение от птиц находится в эволюционном застое. Вирусы гриппа А, в настоящее время циркулирующие у людей, возможно, произошли приблизительно 150 лет назад от вирусов гриппа птиц. Предполагается, что катастрофическая «испанка» 1918 г. произошла от свиней (с подтверждением того, что свинья является промежуточным хозяином). Высоко вирулентные штаммы исчезли, но усилили текущее возникновение гриппа от человека. Вирусы гриппа А, циркулирующие у свиней и лошадей, также происходят из птичьего источника.

    Эпидемиология. Источником инфекции при гриппе являются водоплавающие птицы семейств гусиных и чайковых - исконный резервуар вирусов гриппа для видов птиц и млекопитающих. Вирусы гриппа птиц обычно распространяются путем фекальной контаминации воды (механизм передачи – фекально-оральный, путь передачи – преимущественно водный, в редких случаях – аэрогенно). Доказанной является передача гриппа от свиней к человеку и наоборот. Возможна передача возбудителя от птиц свиньям и лошадям и непрямая передача человеку от птиц через свиней, а также передача возбудителя от цыплят человеку. Среди людей источником инфекции является больной гриппом человек и вирусоноситель. Механизм передачи – аэрогенный, реализующийся преимущественно воздушно-капельным путем. Заболевший человек становится заразным за 24 ч до появления основных симптомов заболевания и представляет эпидемиологическую опасность в течение 48 ч после их исчезновения.

    Патогенез гриппа включает все 7 стадий, характерных для патогенеза циклических вирусных заболеваний (глава «Вирусный инфекционный процесс»).

    Вирусы гриппа А посредством гемагглютинина прикрепляются к плоскому и мерцательному эпителию верхнего отдела дыхательных путей. В эпителиальных клетках происходит первичная репродукция вирусов. Размножение протекает с исключительно высокой скоростью, что достигается благодаря фрагментированному геному вирусов гриппа А и объясняет короткий инкубационный период – 1-2 дня. Быстроте репродукции вирусов способствует распространение многих сотен вирионов, подготовленных лишь одной зараженной клеткой. В дальнейшем вирусы попадают в кровь и разносятся по всему организму. Под действием вирусов активируется система протеолиза и повреждается эндотелий капилляров, что приводит к повышенной проницаемости сосудов, кровоизлияниям и дополнительному повреждению тканей различных органов (трахея, бронхи, миокард, легкие, головной мозг, почки). Вирусы гриппа А, попадая в кровь, вызывают угнетение кроветворения и иммунной системы, развивается лейкопения и гиперсупрессорный вариант иммунодефицита. Поражение мерцательного эпителия дыхательных путей сопровождается его разрушением, что является входными воротами для проникновения бактерий в легкие. Появляется опасность развития бактериальной суперинфекции – бронхита, пневмонии. Белок NS1 вируса гриппа А способен индуцировать апоптоз в чувствительных клетках.

    Иммунитет обеспечивается системой интерферонов, натуральными киллерами, Т-киллерами и специфическими антителами. Интерфероны (преимущественно α-интерфероны) ингибируют репродукцию вируса в эпителиальных клетках, а также стимулируют функциональную активность натуральных киллеров. Последние разрушают вирусинфицированные клетки, что способствует элиминации возбудителя из организма. Индукторами продукции интерферонов являются сами вирусы гриппа, однако продукция интерферонов существенно угнетается при высоких инфицирующих дозах вируса.

    Антигенспецифические Т-киллеры разрушают вирусинфицированные эпителиоциты, предоставляя тем самым доступ к вирусам гриппа иммуноглобулинам. Последние, взаимодействуя с антигенными детерминантами вирусов, образуют ЦИК. При низкой аффинности иммуноглобулинов инактивации вируса в ЦИК не происходит, что может вызвать инфицирование здоровых эпителиоцитов. Элиминация ЦИК из организма больного гриппом осуществляется системой макрофагов. Завершенность фагоцитоза ЦИК зависит от их молекулярности: наиболее интенсивно элиминируются крупномолекулярные ЦИК, тогда как средние и мелкие ЦИК могут длительно циркулировать во внутренней среде организма, оседая в паренхиматозных органах (почках, легких, мозге), а также сосудах микроциркуляторного русла, что вызывает дополнительное их поражение.

    Секреторные иммуноглобулины А, выводимые на поверхность слизистых оболочек верхних дыхательных путей, вызывают инактивацию вирусов гриппа и способствуют их фагоцитозу. Основными защитными антителами при гриппе являются секреторные Ig А и сывороточные Ig М и G к молекуле гемагглютинина, которые нейтрализуют инфективность вирусов и отвечают за формирование стойкости к инфекции. Гуморальный ответ на гемагглютинин является специфическим для данного вида вирусов, однако антигенный дрейф позволяет вирусам избежать инактивации антителами. Антитела к нейраминидазе не предотвращают инфекцию, но уменьшают распространение вирусов в организме. Иммунитет при гриппе является родо- и видоспецифическим, сохраняющимся в течение многих десятилетий.

    Клиника. Грипп начинается остро с озноба, лихорадки (39-40˚С), головной боли, слабости, ломоты в костях и суставах, заложенности носа со скудным отделяемым, непродуктивного кашля. Более тяжелое течение гриппа может развиться, если возникнет первичная гриппозная пневмония или вторичная бактериальная пневмония. Длительность болезни у взрослых – в среднем 7 дней. Дети, которые болеют гриппом первый раз в жизни, могут содержать в себе вирус в течение 13 дней.

    Лабораторная диагностика гриппа включает вирусоскопический, вирусологический и серологический методы диагностики. Материалом для исследования являются мазки, секрет и смывы из носоглотки, кровь, спинномозговая жидкость и секционный материал.

    Экспресс-диагностика . Используется метод иммунофлюоресценции антител (прямой метод Кумбса). Позволяет провести исследование в течение 2-3 ч от момента взятия материала. Клетки цилиндрического эпителия слизистой оболочки нижней носовой раковины и задней стенки глотки отбирают сухими ватными тампонами и помещают в среду для транспортировки вирусов. В лаборатории тампоны отжимают, а взвесь центрифугируют. Из осадка клеток готовят мазки на предметных стеклах. При посмертном выявлении антигенов вируса гриппа делают отпечатки кусочков ткани легких, а также готовят препараты со слизистой оболочки трахеи и бронхов, соскабливая клетки эпителия. Препараты обрабатываются противогриппозными иммуноглобулинами, нагруженными флюорохромами, инкубируются в течение часа, после чего отмываются физиологическим раствором. Вирусинфицированные клетки при специфическом взаимодействии с иммуноглобулинами и последующем их рассмотрении в люминесцентном микроскопе проявляют свечение. Локализация и характер свечения зависят от стадии развития вируса гриппа в клетках, а также от срока возникновения гриппозной инфекции. В первые дни болезни антиген чаще локализуется в ядрах клеток цилиндрического эпителия при одновременном диффузном или гранулярном свечении цитоплазмы в тех же самых или других клетках. Часто выявляется равномерное гомогенное свечение всей клетки. В случае затухания инфекции свечение чаще всего наблюдается в цитоплазме или в ее части в виде отдельных гранул. Путем сопоставления количества пораженных клеток, находящихся в поле зрения, со сроком заболевания, отмечают наибольшее их количество (4-10) в первые дни болезни, чем в последующие. Диагностическим является специфическое свечение 5 и больше клеток цилиндрического эпителия с яркостью не менее «++».

    Реакция непрямой гемадсорбции основывается на способности клеток цилиндрического эпителия верхних дыхательных путей, пораженных вирусом гриппа, адсорбировать на своей поверхности эритроциты, сенсибилизированные противогриппозными антителами. Используется 0,25 % взвесь сенсибилизированных эритроцитов барана. После 30 минут экспозиции при комнатной температуре взвесью клеток заполняют счетную камеру Горяева и микроскопируют в световом микроскопе с помощью фазово-контрастной оптики. Если в исследуемом препарате выявляют 4-5 клеток цилиндрического эпителия с адсорбированными на них двумя и более эритроцитами, реакцию считают положительной.

    Реакция пассивной гемагглютинации. Антиген вируса гриппа в исследуемом материала выявляют с помощью эритроцитарного антительного диагностикума, который соединяют с освобожденным от слизи и гетерогемагглютининов смывом в соотношении 1:20. При наступлении гемагглютинации реакцию считают положительной. В качестве экспресс-метода диагностики может быть использован ИФА .

    Вирусологический метод.Исследуемым материалом являются смывы из носоглотки, секционный материал, спинномозговая жидкость. Вирусы выделяют на куриных эмбрионах и в культурах клеток.

    Выделение вирусов гриппа на куриных эмбрионах является наиболее доступным. 10-11-дневные куриные эмбрионы заражают инфекционным материалом в объеме 0,1 мл в амниотическую или 0,2 мл – в аллантоисную полости, после чего эмбрионы выдерживают при 33-34˚С в течение 72 ч (оптимальные условия репродукции вирусов А и В). Полученный из куриных эмбрионов вируссодержащий материал исследуют на присутствие феномена гемагглютинации в реакции гемадсорбции (РГА) с эритроцитами кур или морских свинок. Если результаты РГА отрицательные, после пассажей исследование материала заканчивают. В случае наличия агглютинации эритроцитов проводят титрование гемагглютинирующего вируса в РГА.

    Каждый вирусный антиген титруют в 2 параллельных рядах лунок планшета в разведениях от 1:10 до 1:2560. Разница титра в 2 рядах не должна превышать одного двукратного разведения. Если она больше, титрование следует повторить. Обсчитывая титр (в случае двукратной разницы), рассчитывают его среднеарифметическое значение. После определения гемагглютинирующего титра свежевыделенного вируса гриппа готовят его рабочее разведение, содержащее 4 ГАЕ (гемагглютинирующие единицы) в заданном объеме. Идентифицируют изолированный вирус гриппа в РТГА (реакция торможения гемагглютинации), используя коммерческие диагностические сыворотки против возбудителей гриппа А1 (Н1N1), А2 (Н2N2), А3 (Н3N2), В и С. Кроме того, тип вируса гриппа можно определить в реакции связывания комплемента (РСК).

    Выделение вирусов гриппа в культурах клеток. Используются однослойные трипсинизированные культуры клеток эмбриона человека и однодневных цыплят. ЦПД в случае заражения вирусами гриппа характеризуется дегенерацией слоя клеток. ЦПД появляется с 3 по 10 день с момента заражения. Вирусы гриппа А в культуре клеток развиваются медленнее, их ЦПД выражается в появлении фестончатых клеток или клеток с вакуолизацией цитоплазмы, которые слущиваются в процессе дегенерации. Гемадсорбция выявляется значительно раньше, чем ЦПД. Если титр гемагглютининов в культуральной жидкости составляет 1:8 и больше, выделенные на культуре клеток вирусы гриппа идентифицируют в РТГА, если титр меньше, чем 1:8, собранный материал культивируют для повышения титра, либо проводят идентификацию в реакции торможения гемадсорбции (РТГАдс) на инфицированной культуре. Для торможения гемадсорбции титр иммунной сыворотки должен быть не менее чем 1:160 и соответствовать антигенной структуре выделенного вируса. Тип гемагглютинина вируса гриппа при вирусологическом методе исследования устанавливают в РТГА, подтип нейраминидазы – в реакции ингибирования нейраминидазной активности.

    Серологический метод основывается на выявлении увеличения титра противогриппозных антител в динамике заболевания. Для серологической диагностики гриппа используют РНГА, РСК, РТГА, причем последние 2 реакции – наиболее часто. В процессе серологического исследования сывороток крови в РТГА используют последовательные двукратные разведения их на изотоническом растворе натрия хлорида, гриппозный антиген (4 ГАЕ) и взвесь эритроцитов кур или человека с группой крови О (I). Для серологической диагностики гриппа РСК осуществляют в тех же самых условиях, что и для идентификации изолированных вирусов. В РНГА антитела выявляют с помощью стандартных лиофилизированных антигенных эритроцитарных диагностикумов.

    Лечение. Для лечения гриппа используют α-интерфероны , обладающие наибольшим противовирусным действием (реаферон – человеческий генно-инженерный рекомбинантный α 2 -интерферон, который назначают от 500 000 до 1 000 000 ЕД 3 раза в день внутримышечно на протяжении 5-7 дней). Противовирусным действием обладают также индукторы продукции эндогенного интерферона (мефенаминовая кислота, амизон). Выраженное противовирусное действие оказывают химиопрепараты ремантадин, амантадин. Для лечения гриппа применяют также противогриппозные иммуноглобулины. При осложненном течении гриппозной инфекции показаны антибиотики широкого спектра действия.

    Профилактика. Неспецифическая профилактика гриппа включает ранее выявление, изоляцию и санацию источника инфекции (больного человека), а также разрыв механизма и пути передачи вирусов гриппа. С этой целью устанавливается противоэпидемический режим в организованных коллективах (разобщение лиц, ношение масок, соблюдение противоэпидемического режима в больничных отделениях). В очагах инфекции проводится ультрафиолетовое облучение и влажная уборка помещений с использованием дезинфицирующих средств. Массовая неспецифическая профилактика включает использование индукторов продукции эндогенного интерферона (амизон, мефенаминовая кислота).

    Специфическая профилактика включает в себя иммуноглобулинопрофилактику и вакцинопрофилактику . Используются донорские противогриппозные иммуноглобулины в соответствии с возрастными дозами. Для вакцинопрофилактики применяются следующие типы противогриппозных вакцин: 1) живая аттенуированная гриппозная вакцина (аллантоисная и культуральная); 2) убитая цельновирионная гриппозная вакцина; 3) субвирионная гриппозная вакцина; 4) субъединичная гриппозная вакцина, содержащая только гемагглютинин и нейраминидазу.

    Наиболее эффективными являются субъединичные гриппозные вакцины, среди которых имеется моновакцина (Н1N1), дивакцина (Н1N1+Н3N2) и тривакцина (А/H1N1+A/H3N2+B). В настоящее время в Украине широко используются зарубежные гриппозные вакцины «Флюарикс» (Бельгия), «Ваксигрипп» (Франция) и «Инфлувак» (Голландия). Эти вакцины являются субвирионными гриппозными тривакцинами. Одна доза вакцины (0,5 мл) вводится внутримышечно или подкожно, иммунитет развивается в течение 3-4 недель. Вакцинацию осуществляют в периоды наибольшего риска развития эпидемий. Вакцинация наиболее показана лицам младшего и преклонного возрастов, а также сотрудникам лечебно-профилактических учреждений. Вакцинацию следует проводить за 3-4 недели до начала эпидемии.

    Антигенный дрейф вируса гриппа – это процесс в результате которого образуются новые штаммы возбудителя. Именно благодаря нему иммунитет после перенесенного заболевания сохраняется всего несколько лет.

    Антигенный дрейф вируса гриппа – это причина того, что этим заболеванием ежегодно переболевают огромное количество человек . Некоторые инфекции после себя оставляют стойкий иммунитет, так как возбудитель, их вызывающий, имеет постоянную антигенную структуру. Иммунные клетки, вступив в контакт с микробом, на всю жизнь сохраняют «память» и способность вырабатывать антитела. При повторном контакте с возбудителем, благодаря этим антителам, организм сохраняет невосприимчивость к болезни. Но с гриппом ситуация иная. Этим заболеванием можно переболеть несколько раз за сезон.

    Процесс в результате которого образуются новые штаммы возбудителя, называется антигенным дрейфом

    При попадании возбудителя в организм защитные силы включаются сразу. Некоторые механизмы, такие, как наличие слоя слизи, ворсинчатого эпителия, поверхностных секреторных иммуноглобулинов на слизистой дыхательных путей, активны постоянно. Другие – реакция лейкоцитов – начинают действовать немного позже, так как клеткам надо время, чтоб попасть к очагу инфекции.

    Быстрые меры обычно носят неспецифический характер, они одинаково проявляются по отношению ко всем агрессивным воздействиям. Кроме них, есть еще один механизм защиты, он присоединяется позднее всех и оказывает специфическое воздействие (то есть, он приспособлен для уничтожения конкретного агрессора). Это реакция синтеза антител в ответ на антигенную стимуляцию.

    Антигенами являются любые чужеродные вещества, которые при попадании в организм провоцируют иммунный ответ в виде выработки антител. Антитела – это особые белки, обладающие способностью взаимодействовать с антигенами с образованием устойчивых соединений. Комплексы «антиген плюс антитело» называется циркулирующими иммунными комплексами (ЦИК). Они находятся в крови и постепенно поглощаются лейкоцитами.

    Антигеном, теоретически, может быть любое вещество. Структура бактерии, вируса или другой инородной частицы (например, пыльцы) может иметь несколько элементов, проявляющих антигенные свойства. Антигены, имеющиеся у вируса гриппа, представлены двумя основными типами:

    Поверхностные антигены (V-антигены). Они находятся в оболочке и выступают над ней в виде шипов. Помимо антигенных свойств, эти вещества играют роль при размножении вируса. Именно мутации генома, ответственного за структуру этих белков, являются «поставщиками» новых серотипов. Это следующие вещества:

    • гемагглютинин (H);
    • нейраминидаза (N).

    Структурные антигены (S-антигены). Расположены под оболочкой, к ним относятся структурные белки, а также рибонуклеопротеиды генома вируса. По этим антигенам грипп подразделяется на серотипы (A, B, C).

    Если организм имеет антитела к тому или иному возбудителю, то заболевание при повторном контакте с ним не разовьется либо будет протекать в легкой форме. Антитела быстро обезвредят вирусы. Человек, переболев заразной болезнью и имея антитела, при последующих контактах с инфекцией оказывается защищен.

    Если организм имеет антитела к возбудителю, то заболевание при повторном контакте не разовьется

    В случае гриппа все немного по-другому. Можно переболеть этим заболеванием, а на следующий год снова заразиться. Иногда можно переболеть за сезон 2–3 раза. Несмотря на то что после гриппа остаются антитела, они не спасают от последующего заражения. Антигенный дрейф вируса гриппа – это и есть тот механизм, который «уводит» вирус из-под иммунного ответа.

    Механизмы, приводящие к изменению антигенной структуры

    Генетическая изменчивость – это один из основных механизмов эволюционного процесса. Если благодаря изменчивости появляется особь или организм, более приспособленный к среде, он получает преимущества для выживания, а также больше возможностей для размножения. Его потомство перенимает ценные свойства.

    Организм человека и животных для вирусов и бактерий является своего рода ареной эволюционной борьбы. Иммунная система использует различные механизмы для защиты от агрессии. Одним из наиболее эффективных является выработка антител. Наилучший способ уйти от иммунного ответа – это изменить свои антигенные свойства. Генетическая изменчивость реализуется двумя основными способами:

    • мутация, при ней происходит случайная замена одного фрагмента генетического материала на другой при процессе копирования под воздействием мутагенных факторов;
    • рекомбинация – это обмен генетическим материалом.

    Рекомбинация – это отдельный очень значимый процесс получения генетически разнородной популяции . Рекомбинацию большинство ученых считают лежащей в основе такого вида изменчивости, как антигенный шифт.

    Мутации вирусов, затрагивающие небольшие участки генома, имеют название антигенный дрейф . Под термином антигенный дрейф вируса гриппа понимают процесс изменения структуры антигенов посредством точечных мутаций. Чаще подобным образом изменяется антигенная структура гемагглютинина, немного реже – нейраминидазы.

    Это вещества белковой природы, они состоят из аминокислот. За синтез одной аминокислоты в РНК вируса обычно отвечает последовательность из нескольких нуклеотидов. Если при размножении вируса произошел сбой, и дочерняя цепь РНК образовалась с заменой нескольких нуклеотидов на другие, то белок, синтезируемый по ней потом, может получить в свой состав не ту аминокислоту. В итоге он приобретает новые свойства.

    Это может быть радикальное изменение, приводящее к значительному повышению вирулентности (например). Но это случается крайне редко. Чаще эта мутация слегка изменяет антигенные свойства молекулы, или, вообще, ведет к дефектности вируса и потере им своих свойств.

    Мутации вирусов, затрагивающие небольшие участки генома, имеют название антигенный дрейф

    Последствия антигенного дрейфа

    Эпидемическое распространение заболевания возможно только при наличии в популяции достаточного количества восприимчивых людей. Это можно сравнить с лесом. Если лес сухой, то пожар по нему распространяется очень быстро, перекидываясь с дерева на дерево.

    Когда прошла эпидемия, в результате которой переболело много людей, образуется так называемая иммунная прослойка (доля переболевших). Это своего рода буфер, благодаря которому прекращается эпидемическое распространение болезни.

    Благодаря иммунной прослойке эпидемии гриппа проходят волнами

    Именно поэтому эпидемии гриппа проходят волнами:

    1. Сначала заболевает небольшое количество восприимчивых людей.
    2. Они заражают здоровых, тоже не имеющих иммунитета, число больных растет.
    3. Первые больные выздоравливают, становясь невосприимчивыми.
    4. Постепенно число переболевших начинает превышать число здоровых людей, тогда эпидемия идет на спад.

    Если бы поверхностные антигены вируса гриппа A и B не подвергались изменчивости (как это, кстати, происходит с вирусом гриппа C), то этой болезнью люди болели бы один раз за жизнь при первом контакте и получали стойкий иммунитет. Но с вирусами гриппа A и B происходит немного иначе. Иммунитет к определенным штаммам этих вирусов тоже сохраняется, но сами вирусы через некоторое время становятся другими.

    Вирусные штаммы постоянно меняются

    Подвергшись антигенному дрейфу, они меняют свой «внешний вид» , благодаря чему антитела перестают их распознавать и специфичность иммунитета снижается. В результате снова растет заболеваемость.

    Высокая изменчивость вируса гриппа является большой проблемой для здравоохранения, а также для человечества в целом . Благодаря ей вирус ежегодно возвращается в виде эпидемий, а порой и пандемий, забирая большое количество ресурсов и человеческих жизней.